
In this project, I analyze Adsphere (a fictional ad platform) data to explore two research

questions: (1) Do advertisers with the most campaigns/ads generate the most revenue? (2)

How do ad presentation choices (formats, CTAs) differ across platforms and placements?

The analysis uses SQL and Python (Seaborn/Matplotlib) to explore patterns and test

relationships

Python: 3.11.5
SQLAlchemy: 1.4.39
pandas: 2.0.3

MySQL username: matt
MySQL password: ········

In [333… !pip -q install mysql-connector-python SQLAlchemy pandas matplotlib

import sys, sqlalchemy, pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt

print("Python:", sys.version.split()[0])
print("SQLAlchemy:", sqlalchemy.__version__)
print("pandas:", pd.__version__)

In [315… # --- RDS Connection Settings ---
DB_HOST = "127.0.0.1"
DB_PORT = 3306
DB_NAME = "adsphere"

In [78]: from getpass import getpass
DB_USER = input("MySQL username: ").strip()
DB_PASS = getpass("MySQL password: ").strip()

In [336… from sqlalchemy import create_engine, text

1) Connect to server (no DB) to verify credentials and list schemas
server_engine = create_engine(
 f"mysql+mysqlconnector://{DB_USER}:{DB_PASS}@{DB_HOST}:{DB_PORT}",
 pool_pre_ping=True,
)

with server_engine.connect() as conn:
 print("Ping:", conn.execute(text("SELECT 1")).scalar_one())
 dbs = pd.read_sql_query(text("SHOW DATABASES"), conn)
 # display(dbs)

 # 2) Ensure target DB exists; create it if needed (comment out if you don't
with server_engine.connect() as conn:
 conn.execute(text(f"CREATE DATABASE IF NOT EXISTS `{DB_NAME}` CHARACTER SET
 print(f"Verified database `{DB_NAME}`")

3) Connect directly to the target DB (still no SSL)
engine = create_engine(
 f"mysql+mysqlconnector://{DB_USER}:{DB_PASS}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
 pool_pre_ping=True,
)

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 1/24

Ping: 1
Verified database `adsphere`
SELECT 1 → 1
Current DB: adsphere

Tables:
Tables_in_adsphere

0 ad

1 ad_event

2 advertiser

3 campaign

4 country

5 device_type

6 event_type

7 placement

8 platform

9 user_profile

10 v_ad_performance

DESCRIBE ad:

with engine.connect() as conn:
 print("SELECT 1 →", conn.execute(text("SELECT 1")).scalar_one())
 print("Current DB:", conn.execute(text("SELECT DATABASE()")).scalar_one())

 print("\nTables:")
 try:
 display(pd.read_sql_query(text("SHOW TABLES"), conn))
 except Exception as e:
 print("SHOW TABLES failed:", e)

 for t in ("ad", "campaign", "advertiser", "v_ad_performance", "platform"):
 try:
 print(f"\nDESCRIBE {t}:")
 display(pd.read_sql_query(text(f"DESCRIBE `{t}`"), conn))
 except Exception:
 pass

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 2/24

Field Type Null Key Default Extra

0 ad_id int NO PRI None auto_increment

1 campaign_id int NO MUL None

2 platform_id int NO MUL None

3 placement_id int NO MUL None

4 name varchar(160) NO None

5 headline varchar(180) NO None

6 ad_text text NO None

7 cta
enum('Learn More','Shop Now','Sign

Up','Downlo... NO None

8 bid_cents int NO None

9 creative_format enum('image','video','carousel','text') NO None

10 url varchar(255) YES None

11 created_at datetime NO None

12 status enum('active','paused','archived') NO active

DESCRIBE campaign:
Field Type Null Key Default Extra

0 campaign_id int NO PRI None auto_increment

1 advertiser_id int NO MUL None

2 name varchar(160) NO None

3 objective enum('reach','traffic','video_views','conversi... NO None

4 daily_budget decimal(10,2) NO None

5 start_date date NO None

6 end_date date YES None

7 status enum('active','paused','completed') NO active

DESCRIBE advertiser:
Field Type Null Key Default Extra

0 advertiser_id int NO PRI None auto_increment

1 name varchar(128) NO UNI None

2 website varchar(255) YES None

3 country_id int YES MUL None

4 industry varchar(64) YES None

DESCRIBE v_ad_performance:

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 3/24

Field Type Null Key Default Extra

0 ad_id int NO 0

1 ad_name varchar(160) NO None

2 platform varchar(64) NO None

3 placement varchar(64) NO None

4 campaign_id int NO 0

5 campaign_name varchar(160) NO None

6 advertiser_name varchar(128) NO None

7 impressions decimal(23,0) YES None

8 clicks decimal(23,0) YES None

9 purchases decimal(23,0) YES None

10 total_cost decimal(30,4) YES None

11 total_revenue decimal(30,4) YES None

DESCRIBE platform:
Field Type Null Key Default Extra

0 platform_id int NO PRI None auto_increment

1 name varchar(64) NO UNI None

Research Question 1: Are companies with the most active campaigns and ads also the top

performers? Specifically, is there a correlation between ad volume and performance, or

does having more ads not necessarily lead to higher results?

Step 1: Identify which advertisers maintain the highest number of active campaigns.

In [317… sql = """
SELECT a.name "Advertiser", a.industry "Industry", COUNT(c.campaign_id) "Number
FROM advertiser a
INNER JOIN campaign c
ON a.advertiser_id = c.advertiser_id
WHERE c.status LIKE 'active'
GROUP BY Advertiser
ORDER BY count(c.campaign_id) DESC
LIMIT 20
"""
with engine.connect() as conn:
 df_1 = pd.read_sql_query(text(sql), conn)

df_1

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 4/24

Advertiser Industry Number of Campaigns

0 Quantum Furniture finance 4

1 Rocket Fitness 02 travel 3

2 Lunar Foods cpg 3

3 Magnet Electronics 02 finance 3

4 Golden Books gaming 2

5 Urban Market saas 2

6 Rocket Outfitters health 2

7 Quantum Outfitters ecommerce 2

8 Silver Tools 02 ecommerce 2

9 Silver Furniture travel 2

10 Urban Market 02 retail 2

11 Phoenix Studios saas 2

12 Apex Toys education 2

13 Quantum Foods education 2

14 Apex Auto 02 ecommerce 2

15 Green Games health 2

16 Rocket Studios health 2

17 Blue Cloud health 2

18 Rocket Electronics education 2

19 Rapid Bikes health 2

Next, I want to analyze advertisers at a more granular level by looking at the number of ads

they run and the average number of ads per campaign. I focus only on active campaigns

and ads to keep the analysis current. An INNER JOIN ensures we only include advertisers

that actually have campaigns, while a LEFT JOIN on ads prevents inflating the "Avg Active

Ads per Campaign" (since some advertisers may have campaigns without active ads).

Out[317]:

In [318… sql = """
SELECT
a1.name Advertiser, a1.industry Industry, COUNT(DISTINCT(c.campaign_id)) "Numbe
COUNT(a2.ad_id) 'Number of Ads',
ROUND(COUNT(a2.ad_id) * 1.0 / NULLIF(COUNT(DISTINCT c.campaign_id), 0),2) 'Avg
FROM advertiser a1
INNER JOIN campaign c
ON c.advertiser_id = a1.advertiser_id
LEFT JOIN ad a2
ON a2.campaign_id = c.campaign_id
WHERE a2.status = 'active' AND c.status = 'active'
GROUP BY Advertiser
ORDER BY COUNT(a2.ad_id) DESC, COUNT(DISTINCT(c.campaign_id)) DESC
LIMIT 20;
"""

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 5/24

Advertiser Industry
Number of

Campaigns
Number of

Ads
Avg Active Ads per

Campaign

0 Quantum Furniture finance 4 42 10.50

1 Rocket Fitness 02 travel 3 38 12.67

2
Magnet

Electronics 02 finance 3 36 12.00

3 Blue Cloud health 2 34 17.00

4 Lunar Foods cpg 3 31 10.33

5
Quantum
Outfitters ecommerce 2 31 15.50

6 Bright Skincare travel 2 30 15.00

7 Rocket Electronics education 2 27 13.50

8 Green Games health 2 25 12.50

9 Golden Auto education 2 25 12.50

10 Urban Market saas 2 24 12.00

11 Rocket Studios health 2 23 11.50

12 Apex Toys education 2 23 11.50

13 Rocket Outfitters health 2 23 11.50

14 Urban Market 02 retail 2 21 10.50

15 Silver Market retail 2 20 10.00

16 Phoenix Studios saas 2 20 10.00

17 Apex Auto 02 ecommerce 2 19 9.50

18 Echo Tools health 2 19 9.50

19 Golden Books gaming 2 19 9.50

From the initial results, advertisers like Quantum Furniture and Rock Fitness 02 lead in

active campaigns and ads, with Lunar Foods and Magnet Electronics 02 also appearing in

the top five.

Next, I shift focus to revenue under the same "active only" criteria. This is a good

opportunity to use a CTE: it lets me identify the top-grossing advertisers while maintaining

the filtering logic established earlier. I also include the count of distinct Ad IDs as a preview

of whether ad volume might correlate with revenue performance.

with engine.connect() as conn:
 df_2 = pd.read_sql_query(text(sql), conn)

df_2

Out[318]:

In [319… sql = """
WITH active_ads AS (
SELECT a2.ad_id
FROM ad a2

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 6/24

advertiser_name active_ads impressions clicks total_revenue

0 Rocket Fitness 02 38 82.0 30.0 694.08

1 Urban Market 24 62.0 25.0 586.28

2 Apex Toys 23 62.0 15.0 454.02

3 Apex Electronics 9 28.0 5.0 414.06

4 Echo Tools 19 44.0 20.0 309.76

5 Apex Auto 16 32.0 16.0 303.93

6 Bright Music 16 37.0 10.0 274.58

7 Golden Books 19 48.0 10.0 262.99

8 Nova Toys 14 35.0 20.0 255.32

9 Vertex Books 9 21.0 7.0 249.65

10 Quantum Furniture 42 120.0 36.0 211.92

11 Summit Outfitters 12 28.0 12.0 202.33

12 Prime Travel 10 36.0 5.0 197.67

13 Rocket Fitness 12 18.0 12.0 180.01

14 Polar Bikes 12 35.0 7.0 179.34

15 Silver Foods 7 17.0 6.0 176.83

16 Blue Cloud 34 73.0 32.0 173.41

17 Lunar Outfitters 11 31.0 8.0 166.61

18 Silver Tools 10 33.0 9.0 160.03

19 Apex Auto 02 19 50.0 17.0 159.10

JOIN campaign c
ON c.campaign_id = a2.campaign_id
AND c.status = 'active'
WHERE a2.status = 'active'
)
SELECT
v.advertiser_name,
COUNT(DISTINCT v.ad_id) active_ads,
SUM(v.impressions) impressions,
SUM(v.clicks) clicks,
SUM(v.total_revenue) total_revenue
FROM v_ad_performance v
JOIN active_ads aa
ON aa.ad_id = v.ad_id
GROUP BY v.advertiser_name
ORDER BY total_revenue DESC
LIMIT 20;
"""
with engine.connect() as conn:
 df_3 = pd.read_sql_query(text(sql), conn)

df_3

Out[319]:

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 7/24

The results highlight recurring top advertisers, with Rocket Fitness 02 and Quantum

Furniture consistently appearing near the top. Other strong performers include Lunar Foods

and Magnet Electronics 02. This reinforces the pattern that certain advertisers dominate

across both campaign activity and revenue.

Now it’s time to place campaign volume and revenue performance side by side. Using

another CTE allows both measures to be aligned and compared within a single query.

In [320… sql = """
WITH top_volume AS (
SELECT
a1.name AS advertiser_name, a1.industry AS industry,
COUNT(DISTINCT c.campaign_id) AS active_campaigns,
COUNT(a2.ad_id) AS active_ads,
ROUND(COUNT(a2.ad_id) * 1.0 / NULLIF(COUNT(DISTINCT c.campaign_id), 0),2) AS av
FROM advertiser a1
INNER JOIN campaign c
ON c.advertiser_id = a1.advertiser_id
AND c.status = 'active'
LEFT JOIN ad a2
ON a2.campaign_id = c.campaign_id
AND a2.status = 'active'
GROUP BY a1.name, a1.industry
),

active_ads AS (
SELECT a2.ad_id, c.advertiser_id
FROM ad a2
JOIN campaign c
ON c.campaign_id = a2.campaign_id
AND c.status = 'active'
WHERE a2.status = 'active'
),

top_perf AS (
SELECT
v.advertiser_name,
COUNT(DISTINCT v.ad_id) AS active_ads,
SUM(v.impressions) AS impressions,
SUM(v.clicks) AS clicks,
SUM(v.total_revenue) AS total_revenue
FROM v_ad_performance v
JOIN active_ads aa
ON aa.ad_id = v.ad_id
GROUP BY v.advertiser_name
)

SELECT
v.advertiser_name,
v.active_ads,
v.active_campaigns,
p.total_revenue,
p.impressions,
p.clicks
FROM top_volume v
INNER JOIN top_perf p
ON p.advertiser_name = v.advertiser_name

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 8/24

advertiser_name active_ads active_campaigns total_revenue impressions clicks

0 Rocket Fitness 02 38 3 694.08 82.0 30.0

1 Urban Market 24 2 586.28 62.0 25.0

2 Apex Toys 23 2 454.02 62.0 15.0

3 Apex Electronics 9 1 414.06 28.0 5.0

4 Echo Tools 19 2 309.76 44.0 20.0

5 Apex Auto 16 1 303.93 32.0 16.0

6 Bright Music 16 1 274.58 37.0 10.0

7 Golden Books 19 2 262.99 48.0 10.0

8 Nova Toys 14 1 255.32 35.0 20.0

9 Vertex Books 9 1 249.65 21.0 7.0

10 Quantum Furniture 42 4 211.92 120.0 36.0

11 Summit Outfitters 12 1 202.33 28.0 12.0

12 Prime Travel 10 1 197.67 36.0 5.0

13 Rocket Fitness 12 1 180.01 18.0 12.0

14 Polar Bikes 12 1 179.34 35.0 7.0

15 Silver Foods 7 1 176.83 17.0 6.0

16 Blue Cloud 34 2 173.41 73.0 32.0

17 Lunar Outfitters 11 1 166.61 31.0 8.0

18 Silver Tools 10 1 160.03 33.0 9.0

19 Apex Auto 02 19 2 159.10 50.0 17.0

This comparison helps identify which advertisers are strong in both campaign activity and

revenue. To formally test correlation between ad volume and performance, I make slight

adjustments to the query and then visualize the relationship using Seaborn and Matplotlib.

ROAS (Return on Ad Spend) is included as a performance metric in this query. Since the

goal is visualization, no ordering is applied in the SQL so that results can be plotted directly.

ORDER BY p.total_revenue DESC
LIMIT 20;
"""
with engine.connect() as conn:
 df_4 = pd.read_sql_query(text(sql), conn)

df_4

Out[320]:

In [322… sql = """
WITH active_ads AS (
SELECT a2.ad_id, c.advertiser_id
FROM ad a2
JOIN campaign c
ON c.campaign_id = a2.campaign_id
AND c.status = 'active'

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 9/24

WHERE a2.status = 'active'
),

top_volume AS (
SELECT a1.advertiser_id,
COUNT(DISTINCT c.campaign_id) active_campaigns,
COUNT(DISTINCT a2.ad_id) active_ads
FROM advertiser a1
JOIN campaign c
ON c.advertiser_id = a1.advertiser_id
AND c.status = 'active'
LEFT JOIN ad a2
ON a2.campaign_id = c.campaign_id
AND a2.status = 'active'
GROUP BY a1.advertiser_id
),

top_perf AS (
SELECT ca.advertiser_id,
SUM(v.impressions) impressions,
SUM(v.clicks) clicks,
SUM(v.total_cost) total_cost,
SUM(v.total_revenue) total_revenue,
CASE WHEN SUM(v.total_cost) > 0 THEN SUM(v.total_revenue)/SUM(v.total_cost) END
FROM active_ads ca
JOIN v_ad_performance v
ON v.ad_id = ca.ad_id
GROUP BY ca.advertiser_id
)

SELECT a.advertiser_id, a.name advertiser_name,
top_volume.active_campaigns, top_volume.active_ads,
top_perf.impressions, top_perf.clicks,
top_perf.total_cost, top_perf.total_revenue, top_perf.ROAS
FROM advertiser a
JOIN top_volume
ON a.advertiser_id = top_volume.advertiser_id
JOIN top_perf
ON a.advertiser_id = top_perf.advertiser_id;
"""
with engine.connect() as conn:
 df_5 = pd.read_sql_query(text(sql), conn)

df_5

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 10/24

advertiser_id advertiser_name active_campaigns active_ads impressions clicks total_co

0 2 Urban Market 2 24 62.0 25.0 31.95

1 3 Silver Tools 1 10 33.0 9.0 9.82

2 4 Bright Music 1 16 37.0 10.0 13.58

3 5 Lunar Toys 1 14 41.0 6.0 8.20

4 6 Lunar Foods 3 31 65.0 29.0 29.09

...

57 112 Phoenix Studios 2 20 56.0 14.0 13.65

58 115 Prime Travel 02 1 7 19.0 5.0 3.21

59 116 Nova Toys 1 14 35.0 20.0 17.02

60 117 Green Games 2 25 72.0 24.0 24.33

61 118 Summit Music 1 5 8.0 4.0 4.29

62 rows × 9 columns

Out[322]:

In [303… ax = sb.regplot(data=df_5, x="active_ads", y="total_revenue", scatter_kws={'alp
ax.set_title("Active Ads vs Total Revenue (Current Ads Only)")
ax.set_xlabel("Active Ads")
ax.set_ylabel("Total Revenue")

ax.set_yscale("log")

plt.show()

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 11/24

The regression line trends upward, indicating that on average, advertisers with more active

ads also generate more total revenue. However, the wide scatter shows that advertisers with

a similar number of ads can achieve very different revenue levels, and several outliers are

present.

Conclusion for RQ1: There is evidence of a positive correlation between ad volume and

revenue, but correlation does not imply causation. Having more ads does not guarantee

higher revenue, though it is often associated with it.

Moving on to Research Question 2: How do ad presentation choices differ across platforms

and placements? Specifically, which CTA + format combinations are most commonly used

and most effective in driving clicks?

For this analysis, I consider all ads (active and inactive) to capture the full range of

presentation strategies.

To begin exploring RQ2, I start with a basic frequency check: counting how many ads use

each creative format. This provides a baseline view of how ad presentation formats are

distributed across the dataset.

In [323… sql = """
SELECT COUNT(ad_id) "Number of Ads", creative_format "Format"
FROM ad
GROUP BY creative_format
ORDER BY COUNT(ad_id) DESC

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 12/24

Number of Ads Format

0 796 video

1 748 image

2 747 text

3 709 carousel

The next step is to examine how creative formats are distributed across different platforms.

Adding platform context allows us to see whether certain formats are preferred on specific

platforms.

"""
with engine.connect() as conn:
 df_6 = pd.read_sql_query(text(sql), conn)

df_6

Out[323]:

In [325… sql = """
SELECT COUNT(a.ad_id) "Number of Ads", a.creative_format "Format", p.name "Plat
FROM ad a
INNER JOIN Platform p
ON a.platform_id = p.platform_id
GROUP BY p.name, a.creative_format
ORDER BY P.name ASC, COUNT(a.ad_id) DESC
"""
with engine.connect() as conn:
 df_7 = pd.read_sql_query(text(sql), conn)

df_7

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 13/24

Number of Ads Format Platform

0 134 image Chatter

1 112 video Chatter

2 109 text Chatter

3 107 carousel Chatter

4 143 video FaceWorld

5 132 image FaceWorld

6 129 text FaceWorld

7 104 carousel FaceWorld

8 137 text InstaPic

9 131 carousel InstaPic

10 129 video InstaPic

11 129 image InstaPic

12 132 carousel LinkLine

13 131 video LinkLine

14 128 text LinkLine

15 122 image LinkLine

16 135 video SnapGram

17 132 text SnapGram

18 128 carousel SnapGram

19 103 image SnapGram

20 146 video TokTik

21 128 image TokTik

22 112 text TokTik

23 107 carousel TokTik

Next, I calculate what share of each platform’s ads belong to each creative format. This

highlights how formats are distributed within platforms, not just in overall counts.

Out[325]:

In [326… sql = """
WITH total_ads AS (
SELECT a.platform_id, COUNT(a.ad_id) total_ads
FROM ad a
JOIN platform p
ON a.platform_id = p.platform_id
GROUP BY a.platform_id
),

format_ads AS (
SELECT a.platform_id, a.creative_format, COUNT(a.ad_id) format_ads
FROM ad a
GROUP BY a.platform_id, a.creative_format

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 14/24

)

SELECT
p.name "Platform",
fa.creative_format "Format",
fa.format_ads AS "Number of Ads",
ROUND(fa.format_ads * 1.0 / t.total_ads, 3) "Share"
FROM format_ads fa
INNER JOIN total_ads t
ON t.platform_id = fa.platform_id
INNER JOIN platform p
ON p.platform_id = fa.platform_id
ORDER BY p.name ASC, "Share" DESC;
"""
with engine.connect() as conn:
 df_8 = pd.read_sql_query(text(sql), conn)

df_8

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 15/24

Platform Format Number of Ads Share

0 Chatter video 112 0.242

1 Chatter image 134 0.290

2 Chatter text 109 0.236

3 Chatter carousel 107 0.232

4 FaceWorld image 132 0.260

5 FaceWorld text 129 0.254

6 FaceWorld carousel 104 0.205

7 FaceWorld video 143 0.282

8 InstaPic carousel 131 0.249

9 InstaPic video 129 0.245

10 InstaPic text 137 0.260

11 InstaPic image 129 0.245

12 LinkLine image 122 0.238

13 LinkLine video 131 0.255

14 LinkLine carousel 132 0.257

15 LinkLine text 128 0.250

16 SnapGram carousel 128 0.257

17 SnapGram text 132 0.265

18 SnapGram video 135 0.271

19 SnapGram image 103 0.207

20 TokTik image 128 0.260

21 TokTik video 146 0.296

22 TokTik text 112 0.227

23 TokTik carousel 107 0.217

This breakdown enables a more detailed analysis of how each platform allocates its ads

across creative formats. It provides context for comparing not only overall volumes but also

relative usage patterns by platform.

Next, I examine which CTAs are most frequently used on each platform. This highlights how

different platforms emphasize particular calls-to-action.

Out[326]:

In [327… sql = """
SELECT COUNT(a.ad_id) "Number of Ads", a.cta "CTA", p.name "Platform"
FROM ad a
INNER JOIN platform p
ON a.platform_id = p.platform_id
GROUP BY p.name, a.cta
ORDER BY p.name ASC, COUNT(a.ad_id) DESC
"""

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 16/24

with engine.connect() as conn:
 df_9 = pd.read_sql_query(text(sql), conn)

df_9

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 17/24

Number of Ads CTA Platform

0 90 Download Chatter

1 88 Sign Up Chatter

2 76 Get Offer Chatter

3 75 Shop Now Chatter

4 72 Subscribe Chatter

5 61 Learn More Chatter

6 99 Subscribe FaceWorld

7 90 Shop Now FaceWorld

8 90 Download FaceWorld

9 83 Learn More FaceWorld

10 82 Get Offer FaceWorld

11 64 Sign Up FaceWorld

12 99 Subscribe InstaPic

13 98 Learn More InstaPic

14 90 Get Offer InstaPic

15 85 Download InstaPic

16 77 Shop Now InstaPic

17 77 Sign Up InstaPic

18 109 Subscribe LinkLine

19 88 Sign Up LinkLine

20 84 Shop Now LinkLine

21 83 Download LinkLine

22 82 Get Offer LinkLine

23 67 Learn More LinkLine

24 99 Sign Up SnapGram

25 87 Shop Now SnapGram

26 82 Download SnapGram

27 81 Learn More SnapGram

28 77 Subscribe SnapGram

29 72 Get Offer SnapGram

30 88 Get Offer TokTik

31 87 Shop Now TokTik

32 83 Subscribe TokTik

33 80 Download TokTik

34 79 Sign Up TokTik

Out[327]:

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 18/24

Number of Ads CTA Platform

35 76 Learn More TokTik

Having gathered frequency data, the analysis now shifts from identifying what is most

common to evaluating what is most engaging.

To evaluate engagement, I measure which CTA and creative format combinations generate

the most clicks per platform. A LEFT JOIN is used to include all ads while still bringing in

performance data when available.

In [328… sql = """
SELECT COUNT(a.ad_id) "Number of Ads", a.cta "CTA", p.name "Platform", SUM(v.cl
(SUM(v.clicks) / COUNT(a.ad_id) * 1.0) "avg_clicks_per_ad"
FROM ad a
INNER JOIN platform p
ON a.platform_id = p.platform_id
LEFT JOIN v_ad_performance v
ON a.ad_id = v.ad_id
GROUP BY p.name, a.cta
ORDER BY (SUM(v.clicks) / COUNT(a.ad_id) * 1.0) DESC
"""
with engine.connect() as conn:
 df_10 = pd.read_sql_query(text(sql), conn)

df_10

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 19/24

Number of Ads CTA Platform Clicks avg_clicks_per_ad

0 90 Get Offer InstaPic 94.0 1.0444

1 82 Download SnapGram 77.0 0.9390

2 87 Shop Now SnapGram 81.0 0.9310

3 99 Sign Up SnapGram 92.0 0.9293

4 72 Subscribe Chatter 64.0 0.8889

5 109 Subscribe LinkLine 96.0 0.8807

6 81 Learn More SnapGram 70.0 0.8642

7 87 Shop Now TokTik 75.0 0.8621

8 88 Sign Up LinkLine 75.0 0.8523

9 67 Learn More LinkLine 57.0 0.8507

10 99 Subscribe InstaPic 84.0 0.8485

11 79 Sign Up TokTik 66.0 0.8354

12 83 Download LinkLine 69.0 0.8313

13 99 Subscribe FaceWorld 82.0 0.8283

14 90 Download FaceWorld 74.0 0.8222

15 80 Download TokTik 65.0 0.8125

16 83 Learn More FaceWorld 67.0 0.8072

17 88 Sign Up Chatter 71.0 0.8068

18 82 Get Offer LinkLine 66.0 0.8049

19 98 Learn More InstaPic 78.0 0.7959

20 72 Get Offer SnapGram 57.0 0.7917

21 82 Get Offer FaceWorld 64.0 0.7805

22 77 Shop Now InstaPic 60.0 0.7792

23 76 Get Offer Chatter 57.0 0.7500

24 90 Download Chatter 67.0 0.7444

25 84 Shop Now LinkLine 62.0 0.7381

26 90 Shop Now FaceWorld 65.0 0.7222

27 88 Get Offer TokTik 63.0 0.7159

28 76 Learn More TokTik 54.0 0.7105

29 83 Subscribe TokTik 58.0 0.6988

30 61 Learn More Chatter 42.0 0.6885

31 75 Shop Now Chatter 50.0 0.6667

32 77 Sign Up InstaPic 51.0 0.6623

33 85 Download InstaPic 56.0 0.6588

34 77 Subscribe SnapGram 50.0 0.6494

Out[328]:

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 20/24

Number of Ads CTA Platform Clicks avg_clicks_per_ad

35 64 Sign Up FaceWorld 37.0 0.5781

Next, I connect the pieces by asking: which CTAs are top performers across multiple

contexts? This is done by intersecting the most frequently used CTAs with the highest-

performing ones. NULLIF is included in the calculation to safely handle cases where no ads

are present, avoiding divide-by-zero errors.

In [329… sql = """
WITH cta_counts AS (
SELECT
a.cta cta,
COUNT(a.ad_id) num_ads,
SUM(v.clicks) total_clicks,
SUM(v.clicks) * 1.0 / NULLIF(COUNT(a.ad_id), 0) avg_clicks_per_ad
FROM ad a
LEFT JOIN v_ad_performance v
ON v.ad_id = a.ad_id
GROUP BY a.cta
),

top_freq AS (
SELECT cta
FROM cta_counts
ORDER BY num_ads DESC
LIMIT 5
),

top_engagement AS (
SELECT cta
FROM cta_counts
ORDER BY avg_clicks_per_ad DESC
LIMIT 5
)

SELECT c.cta, c.num_ads, c.total_clicks, c.avg_clicks_per_ad
FROM cta_counts c
INNER JOIN top_freq f
ON f.cta = c.cta
INNER
JOIN top_engagement e
ON e.cta = c.cta
ORDER BY c.avg_clicks_per_ad DESC;
"""
with engine.connect() as conn:
 df_11 = pd.read_sql_query(text(sql), conn)

df_11

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 21/24

cta num_ads total_clicks avg_clicks_per_ad

0 Get Offer 490 401.0 0.81837

1 Subscribe 539 434.0 0.80519

2 Download 510 408.0 0.80000

3 Sign Up 495 392.0 0.79192

These results represent the CTAs that are both widely used by advertisers and among the

strongest performers with users. The intersection approach ensures the list highlights CTAs

that succeed on both dimensions: popularity and engagement.

Finally, I compare CTA performance across two specific creative formats: video and image.

The goal is to see which CTAs generate the most engagement in video ads compared to

image ads.

Out[329]:

In [330… sql = """
WITH format_cta AS (
SELECT
a.creative_format,
a.cta,
COUNT(a.ad_id) num_ads,
SUM(v.clicks) total_clicks,
SUM(v.clicks) * 1.0 / NULLIF(COUNT(a.ad_id),0) avg_clicks_per_ad
FROM ad a
LEFT JOIN v_ad_performance v
ON v.ad_id = a.ad_id
WHERE a.creative_format IN ('video','image')
GROUP BY a.creative_format, a.cta
)

SELECT *
FROM format_cta
ORDER BY avg_clicks_per_ad DESC;
"""
with engine.connect() as conn:
 df_12 = pd.read_sql_query(text(sql), conn)

df_12

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 22/24

creative_format cta num_ads total_clicks avg_clicks_per_ad

0 image Learn More 116 109.0 0.93966

1 image Get Offer 123 106.0 0.86179

2 video Shop Now 132 111.0 0.84091

3 video Download 126 105.0 0.83333

4 video Subscribe 157 130.0 0.82803

5 image Sign Up 143 117.0 0.81818

6 video Sign Up 115 93.0 0.80870

7 image Shop Now 108 87.0 0.80556

8 image Download 131 105.0 0.80153

9 video Get Offer 138 105.0 0.76087

10 video Learn More 128 93.0 0.72656

11 image Subscribe 127 92.0 0.72441

To support the conclusion, I create a visualization. A grouped bar plot is used to compare

CTAs by average clicks, with creative format as an additional dimension. This highlights

differences in CTA effectiveness between image and video ads.

Out[330]:

In [313… plt.figure(figsize=(10,6))
ax = sb.barplot(data=df_12, x="cta", y="avg_clicks_per_ad", hue="creative_forma

ax.set_title("CTA Effectiveness: Video vs Image Ads")
ax.set_xlabel("CTA")
ax.set_ylabel("Average Clicks per Ad")

plt.legend(title="Format")
plt.show()

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 23/24

Overall, there is no single format that consistently outperforms the other. Effectiveness

depends on the combination of CTA and format: for example, "Learn More" is strongest in

image ads, while "Subscribe" performs best in video.

Conclusion for RQ2: Ad presentation choices vary by platform and placement, and

performance depends not on the CTA or the format alone, but on how the two are paired

together.

9/30/25, 3:28 PM Ad Campaign Analytics with SQL & Python

file:///Users/mattabatangle/Downloads/Ad Campaign Analytics with SQL & Python.html 24/24

